

characterization of silica, focus on statistical size distributions

G. Foray, L. Roiban, E. Pons, B. Yrieix

Introduction

Materials

Caracterization tools : Usual & AETomography Raw silica results for usual & AET

Aged silica, 2D

Conclusion

2

Introduction, material and product

Silica **Particles** within Nanostructured silica (schematic view)

Silica Agglomerates (3D – AETomography) A composite, Optimized packed Vaccum (X tomography)

A SIM

Board or Sealed panel

MATe'B

Particle & Pore imbricated Networks

Introduction, mechanisms

Create a Nanostructure or Confine

Introduction, mechanisms

Bulk density and granular Compacity always matter

Antagonism in WANTED properties

Highly porous Architecture

on at least 3 scales

1. Nano particles.....diameter 15nm

2. Agglomerates......200nm

3. Microscopic GrainS.....10µm

→..COMPOSITE Super Insulation System

Precipitated Sample

Fumed Sample

Same nature but ≠ Si surfaces

Mass production available

Used in low Vf in many Applications (transportation, health...)

Barely used as DURABILITY & EFFICIENCY Leader

Candidates for SI due to their x Scale nanoporosity

Ageing should be considered

WANTED : Pore and Particle Size Distributions

MATER Microstructure analysis

E. Maire, J Adrien, C. Petit CR physique 2014

MATER Microstructure analysis, GLOBAL

Global methods

Sorption (He, Ar, N, H2O) or Intrusion (Hg, water,..) + Modeling

Preparation STEPs :

Pressure, Drying, Dispersion....

Mechanisms are overlapping :

Shrinkage and surface measurement for BET

Mechanical collapse and Intrusion for poro. Hg

High specific surfaces imply artefacts

Efficiency CONFIRMED,

For PORE SD if methods are coupled

MATE Microstructure analysis, 3D

CI YM

ETEM + EDS. EELS

RCELYDN

Recently developed :

High image resolution (nm and µm)

Numerical treatment of 3D volume

No pretreatment required :

Raw and aged could be qualify

To be confirmed:

Ability to image SilicaS (Beam sensitive)

Ag Particles on silicalite surface Wall 328 images 3'54'' Tilt angle -78° et 38.5°

Introduction

Materials Caracterization tools : Usual & AETomography Raw silica results for usual & AET Aged silica, 2D

Conclusion

Raw silica, global measurements

Hg pressure : mechanical test + intrusion

Raw silica, global measurements

Hg pressure : mechanical test then intrusion

Silica 81images 1'10 2048x2048 pixel Tilt angle -71° et 71°

AET tomography, projections Prec. Sample Fumed Sample

Silica particles are viewed in black

50 nm

MATe'B

A. Perret ,MATeB thesis

XY projections issued from a reconstructed volume,

enough contrast no artefact for both Silica

Particles and pores are observed

AET tomography, projections Prec. Sample Fumed Sample

Silica particles are viewed in black

MATe'B

XY projections issued from a reconstructed volume,

enough contrast no artefact for both Silica

Each projection has its own structure

A. Perret ,MATeB thesis

Reconstructed volume, Silica particles (Green) only are viewed

A few transverse pore are observed + free branch

AET tomography, volumes

Reconstructed volume, Silica particles (Green) only are viewed

Network features : Size, morphology, connection ...

3D "Particles" and Pore characterized

AET tomography, distribution

AET tomography, distribution

Introduction

Materials Caracterization tools : Usual & AETomography Raw silica results for usual & AET Aged silica 48°C , results for usual + 2D

Conclusion

Aged silica, global measurements

Hg pressure : mechanical test + intrusion

Aged silica, fast 2D imaging

48°C 65% RH

No beam damage, AET feasible Transverse pores, particles, free arms observed

Aged silica, fast 2D imaging

No beam damage, AET feasible

Transverse pores size

Particles size

, free arms not observed

50°C 90% RH

Conclusion and perspectives

✓ Electronic tomography

DES SCIENCES APPLIQUÉES

- Advanced protocol developped,
- 3D pores + particule Volume observed
- Data within a fair computation time
- 2 samples evaluated : Precipitated + Fume
- ✓ Experimental SD towards Thermal modelling Pore SD were used to compute
 Particle SD should be used to
- ✓ Electronic tomography versus Global measurements
 Complementary tools, towards new synthesis

IVIS, Nanjing 09-2015, G. Foray

✓ Perspectives : Aged AET Silica, new products...

Thanks for attention...any Question ?

Acknowledgement : ARC ENERGY Cluster, ADEME, METSA, CLYM

AET tomography, projections **Prec. Sample Fumed Sample** 50 nm 50 nm Silica particles are viewed in black XY projections issued from a reconstructed volume, enough contrast no artefact for both Silica Particles and pores are observed A. Perret .MATeB thesis IVIS, Nanjing 09-2015, G. Foray MATe'B

Raw silica, global measurements Hg test versus N adsorption

AET tomography, distribution MATe'B

IVIS, Nanjing 09-2015, G. Foray

MATe'B

Aged silica, global measurements

Hg pressure : mechanical test + intrusion

Given an industrial process, many parameters :

Reactant

pН

temperature

Pressure...

Given an application, many requirements

Thermal conductivity, Mechanical ppties,

Durability, Aesthetic, Fire, Confort,

Tremendous synthesis possibilities, how to **EVALUATE** ?

Microstructure Versus Functionnal properties,

