

ETICS with vacuum insulation panels for retrofitting buildings from the great Swedish housing program "Miljonprogrammet"

IVIS2015

12th International Vacuum Insulation Symposium - September 19 – 21, 2015, NUAA, China

Robust and Durable Vacuum Insulation Technology for Buildings KTH Div. of Building technology

Kjartan Gudmundsson, Associate Professor, Kjartan.Gudmundsson@byv.kth.se Folke Björk, Professor, Folke.Bjork@byv.kth.se Christer Sjöström, Professor, christer.sjostrom@aerogel.se **Peyman Karami, Ph.D. candidate, peymank@kth.se**

Why the Swedish "Million program"?

We have to deal with the existing building stock - to meet the "20-20-20" targets of the EU-commission related to climate and energy

In Sweden, about <u>21% of the energy use</u> can be related to the heat losses through the climatic envelopes of buildings

The Swedish "Million Program" units built in the period between 1965 and 1974

A U-value of about $0.6 Wm^{-2}K^{-1}$ on average for external walls

Rinkeby, Stockholm

Fittja, Stockholm

Skärholmen, Stockholm

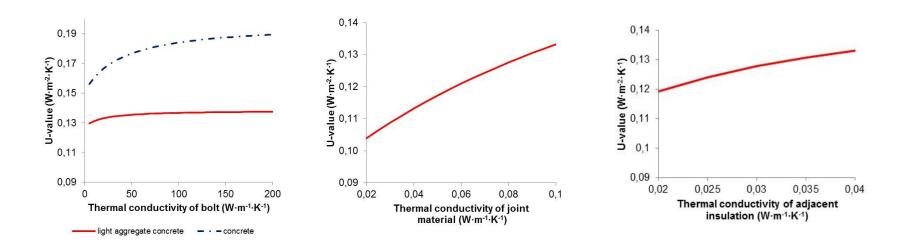
Tensta, Stockholm

Objectives

- To propose a new and robust VIP technical solution for the great Swedish Million dwelling program
- To investigate the influence of various design factors on the resulting U-value
- To simulate heat and moisture conditions.
- To compare theoretical assessments and in situ measurements of thermal performance
- To carry out a full scale measurement in a climatic chamber to investigate the influence of thermal bridges of a wall construction with exterior VIPs

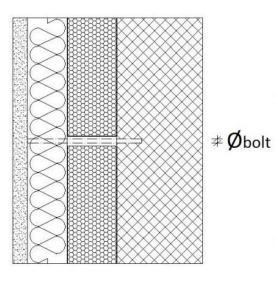
Method

- A parametric study of the impact of the thermal conductivity of the joints of the panels and the adjacent insulation layer as well as the material of the fasteners
- A 3-dimension COMSOL simulation of heat transfer through the construction
- A 2 dimensional transient modeling of vapor diffusion with COMSOL allowing for sorption in the material as well as enhanced moisture transport at high relative humidity.

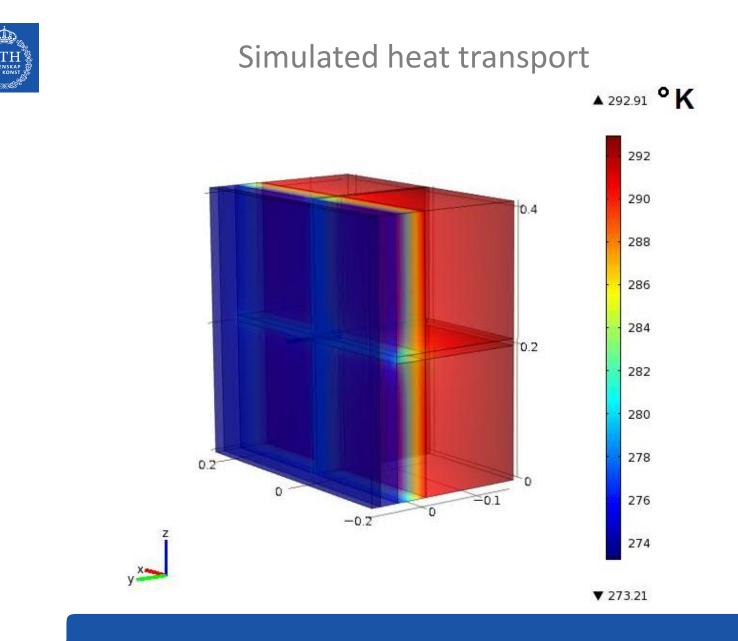


Hovsjö, an example of a housing project in the "Million Program"

Parametric pre-study

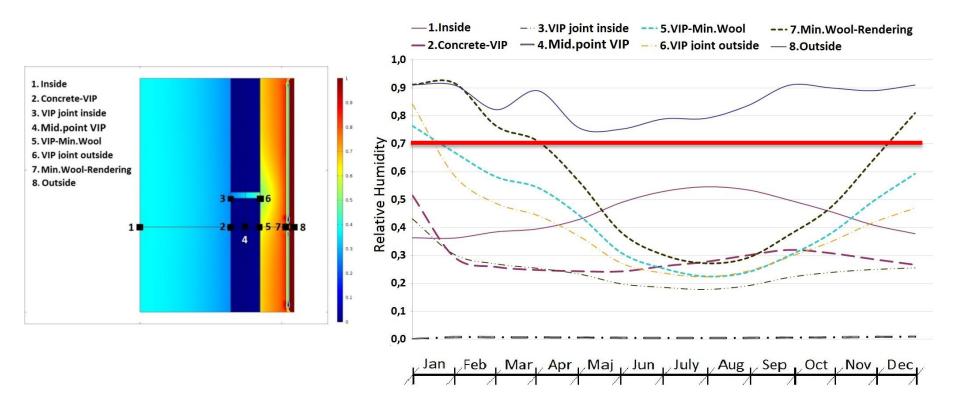

- The material with a high thermal resistance at the VIP joints has a <u>significant influence</u> on the thermal bridges. Going from a value of <u>0.10 to 0.02 W m⁻¹K⁻¹</u> will give a reduction that amounts to about <u>30%</u> of the total density of heat loss
- The influence of improving the outer insulation layer does also have a measurable effect on the heat flux, although somewhat smaller.

VIP technical solution

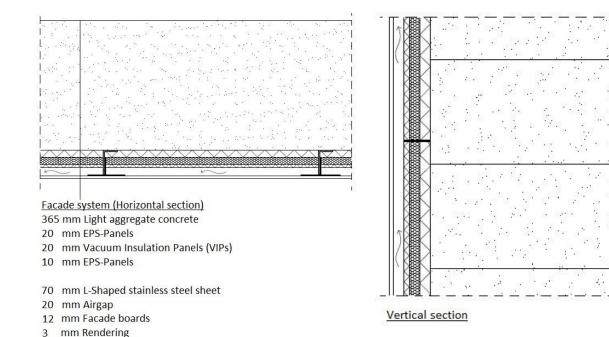

2D och 3D dynamic simulations with Comsol Multiphysics®

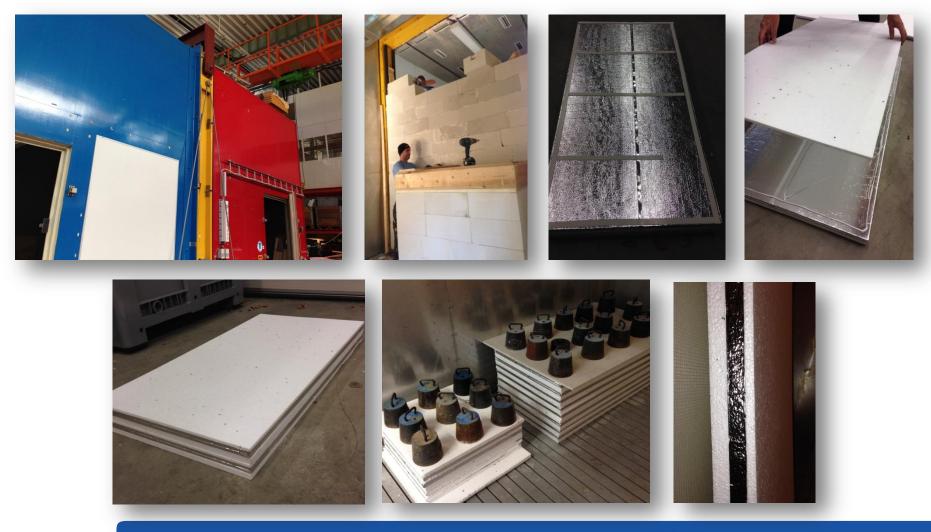
- The average hourly values for outdoor temperature and relative humidity are retrieved from an International weather for energy calculation (IWEC) climate file for Stockholm, 2012
- The indoor temperature and relative humidity are as defined by EN 15026

15 RENDERING 45 MINERAL WOOL 50 VIP , WITH A 10 MM JOINT BETWEEN PANELS 160 LIGHT AGGREGATE CONCRETE


ALL DIMENSIONS IN MM

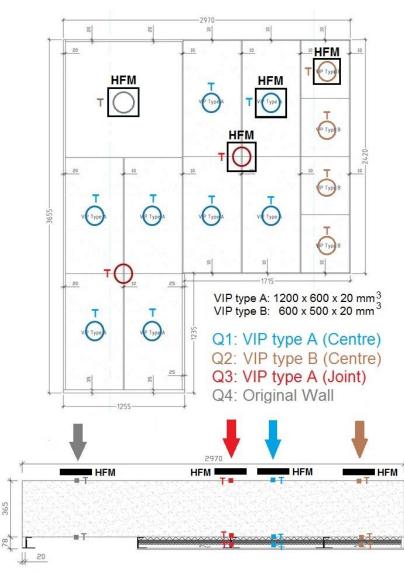
Moisture transport


The relative humidity distribution in wall construction in the long term, extreme conditions.


A new VIP mounting system

- Facade components are standard and available at market.
- The VIP sandwiches were glued to the outside of the wall structure, by the means of an adhesive (hydraulically setting mortar)
- A 3 mm thick L-profile plus a T-profile (stainless steel) provides a flexible ventilating air gap between the façade board and the structure

Full scale laboratory measurement



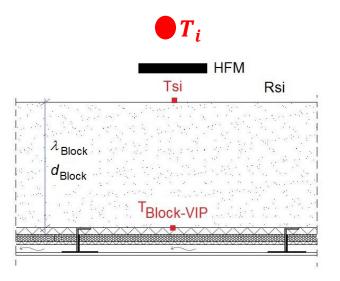
- The heat flow meter (HFM) sensors were mounted in different positions on the interior surface
- 80 temperature sensors, Copper/Constantan as well as Chromel/Alumel thermocouple were installed at various coordinates in the plane of the wall and at the material layer boundaries

Facade system (Horizontal section)

Calculated centre-of-panel U-value

The TPS technique (TPS 2500S-ISO/DIS 22007-2.2) used to evaluate the thermal properties of the materials used in the wall

	Material	d (mm)	λ (W m ⁻ ¹ K ⁻¹)	Standard deviations	Source	R (m ² K W ⁻¹)
	Aerated concrete blocks	365	0.118	± 0.000223	TPS	3.09
	Hydraulically setting mortar	2	0.959	± 0.000234	TPS	0.002
	EPS	20	0.0329	±0.0000156	TPS	0.608
	VIP _{centre}	20	0.0042	-	Manufacturer	4.76
	EPS	10	0.0329	±0.0000156	TPS	0.304
	R _{si}	-	-		Standard value	0.14
	R _{se}	-	-		Standard value	0.04
	R _{wall}	-	-		-	8.944
	Coloulated II value $(W m^{-2} V^{-1})$	417			Before retrofitting 0.305	
	Calculated U-value (W m ⁻² K ⁻¹) 417				After retrofitting 0.112	


Measured Centre-of-Panels U-value

Centre-of-Panels U-value using Thermocouples and reference material

$$\frac{\lambda_{Block}}{d_{Block}} (T_{si} - T_{Block - VIP}) = U_{wall} (T_i - T_e)$$

Centre-of-Panels U-value by using Thermocouples and HFM sensors

$$\frac{(T_i - T_{si})}{R_{si}} = q_{HFM} = U_{wall} \left(T_i - T_e \right)$$

 T_e

Measured effective U-value

Effective U-value by thermography investigations

$$q_{tot} = U_{centre-of-panel} \cdot \Delta T + \Psi \cdot \frac{P}{A} \cdot \Delta T$$

$$\frac{\frac{T_e - T_{se,VIPcentre}}{R_{se}}}{\frac{T_e - \overline{T_{se}}}{R_{se}}} = \frac{U_{centre-of-panel} \cdot (T_i - T_e)}{U_{effective} \cdot (T_i - T_e)}$$

T_e: Outside air temperature

T_i: Inside air temprature

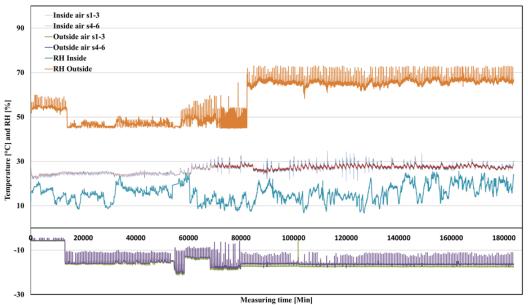
 $\overline{T_{se}}$: Average outside wall surface temperature

 $T_{seVIPcentre}$: Outside wall surface temperature at coordinate of the centre-of-panel

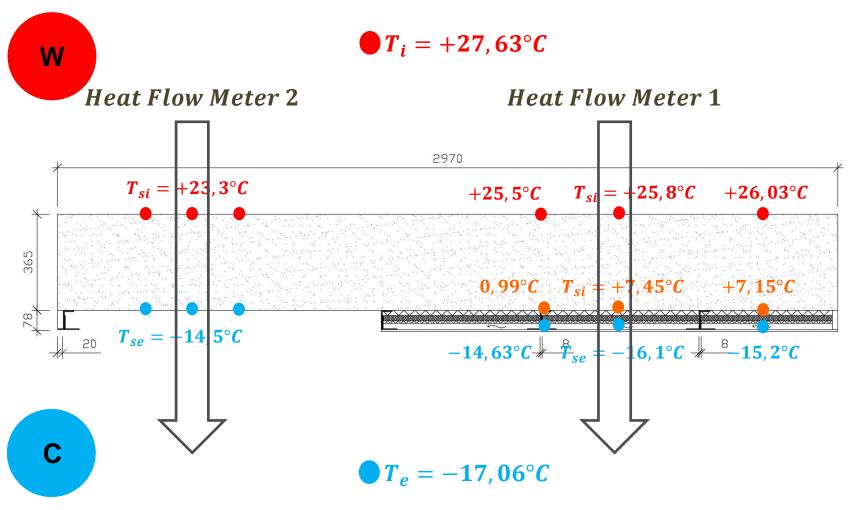
R_{se}: Wall surface thermal resistance at exterior side

U_{centre-of-panels} : Thermal transmittance of the wall at coordinate of the centre-of-panels

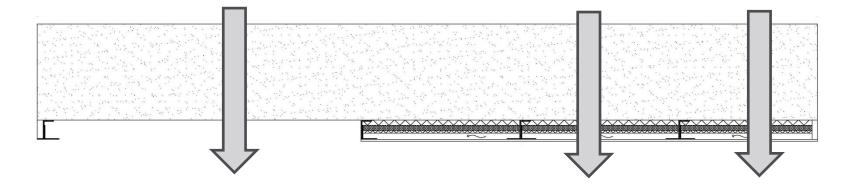
 $U_{\text{effective}}$: Effective thermal transmittance of the wall



Climatic Condition


	Maaguring	Colder side		Warme	Warmer side	
Climate sequences	Measuring time (Hours)	T _e (℃)	RH _e (%) ^a	Τ _i (℃)	RH _e (%) ^a	
Climatic time sequence No.1	410	-5		22-24		
Climatic time sequence No.2	860	-15	45 - 73	23-28	6.7–25.5	
Climatic time sequence No.3	2030	-20		23-28		

Hourly measured inside/outside air temperature and relative humidity

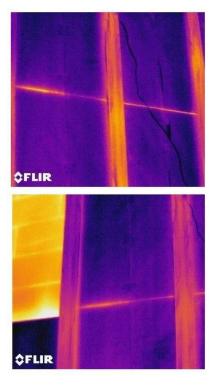

Measured temperatures

Centre-of-Panels U-values

$R_{si} = 0,24 \ (m^2 \cdot K)/W$

Calculated:	0.305	0,112	$W/(m^2 \cdot K)$
Measured: (T-sensors)	0.275	0,121 — 0.136	$W/(m^2 \cdot K)$
Measured : (HFM)	0.323	0,17	$W/(m^2 \cdot K)$

Taking into account an addition standard thermal resistance of a ventilated air gap


Calculated:	0.29	0,109	$W/(m^2 \cdot K)$
Measured: (T-sensors)	0.26	0,118 - 0.132	$W/(m^2 \cdot K)$
Measured : (HFM)	0.3	0,165	$W/(m^2 \cdot K)$

Effective U-value

Measured temperatures:

	VIP N	lo. 5-8
Placement	VIP _{centre} 1200×600 mm ²	VIP _{joint} 1200×600 mm ²
Inside air temperature (° C)	28	.83
Interior surface temperature ($^{\circ}$ C)	25.62	25.52
Concrete blocks $-VIP(^{\circ} C)$	6.89	0.58
Exterior surface temperature(° C)	-15.31	-13.31
Outside air temprature ($^{\circ}$ C)	-16	5.87

A comparison of the U-values and λ -values:

	$[W/(m^2 \cdot K)]$		[mW/(m·K)]
Calculated U _{centre-of-panel}	0,112	According to manufacturer $\lambda_{\text{centre-of-panel}}$	4,2
Measured U _{centre-of-panel}	0,132	Measured $\lambda_{\text{centre-of-panel}}$	≈7
Measured U _{effective}	0,154	Measured $\lambda_{\text{effective}}$	≈10,9

Conclusions

- Use material with relatively low thermal conductivity at the joints have a significant impact on the resulting U value.
- Thermal conductivity of the adjacent insulation next to the VIP's have a measurable effect on the heat flow, while the choice of materials for the mounting (e.g. screws) have a smaller effect on the resulting U value compared to the effect of the material in the joints and adjacent insulation.
- Relative humidity calculation shows that the location of the VIP on the outside does not a moisture problem to the construction.
- There is no risk of high relative humidity at the joints.
- VIPs is a very competitive solution to renovate the construction of the Swedish "Million Program".
- This study demonstrates a robust, effective, simple and fast system for external mounting of the VIPs, an improved centre-of-panels thermal transmittance of the wall, in the range of 0.118-0.132 W m⁻²K⁻¹ as well as a low effective thermal conductivity for the VIPs of 10,9 mW m⁻¹K⁻¹, are reached.

Thanks for your kind attention!