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Development of novel opaque and transparent barrier films 
for VIP-encapsulation – Part-II: Barrier film production for VIPs

� Barrier requirements of vacuum insulation panels (VIPs)

� State-of-the-art barrier films for VIPs

� Development of novel barrier films for VIPs

� Results for opaque barrier films

� Results for transparent barrier films

� Summary and outlook
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� Contributions to the heat transport

� Heat radiation (Φrad)

� Heat conductance within the solid matrix of the core material (Φsol)

� Heat conductance through the gas within the pores of the core 
material (Φg)

� ΦΦΦΦg increasing with gas pressure

⇒ VIP encapsulation: protection against oxygen, nitrogen and water 
vapour 

Left: M. Bouquerel et al., Energy and Buildings (2012), 
doi:10.1016/j.enbuild.2012.07.034
Right: R. Baetens et al., Energy and Buildings 42 (2010), 147–172

Heat transport in VIPs
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VIP encapsulation

Aluminum foil

� Nearly impermeable

� Disadvantage: Heat bridge 
effect

Polymer based film

� Disadvantage: Barrier 
performance not sufficient

⇒ Application of barrier layers

Left: Fraunhofer IVV
Right: H.-C. Langowski, in: O. G. Piringer, A. L. Baner (eds.), Plastic 
Packaging - Interactions with Food and Pharmaceuticals, 2008
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� Physical vapour deposition of inor-
ganic layers on polymeric substrates

� Thermal or electron beam evaporation

� Aluminum or transparent oxides, e.g. 
SiOx, AlOx

� Lamination of films carrying barrier layers

⇒ Barrier improvement of polymeric 
films

Top: Electron beam evaporation (Amcor)
Bottom: Laminates for VIP encapsulation (R. Baetens et al., 
Energy and Buildings 42 (2010), 147–172)

State-of-the-art barrier films for VIPs
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� Permeation of O2 and H2O through defects within inorganic 
layers

� Formation of defects: Surface roughness, particles, mechanical 
stress

� Additional permeation mechanisms for water vapour

� Nanodefects or grain boundaries

� Assumption: Capillary condensation

Left: Defects in Al (IVV); Center: Defects in SiOx (IVV)
Right: Permeation paths in SiOx (A.P. Roberts et al., 
Journal of Membrane Science 208 (2002), 75–88)

Permeation through inorganic barrier layers
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� Development of cost effective opaque and transparent VIPs

� Six times more energy efficient than current solutions

� Core materials: Nanoporous polymer foams, aerogel-polymer 
composites

� VIP lifetime > 50 years

� O2 permeability (at 23°C) < 10-3 cm3(STP)⋅⋅⋅⋅d-1⋅⋅⋅⋅m-2⋅⋅⋅⋅bar-1

� WVTR (at 23°C, 85%→→→→0% r.h.) < 10-3 g⋅⋅⋅⋅d-1⋅⋅⋅⋅m-2

Funded by the European Union 7th Framework Programme

Time: 2010 – 2014

11 project partners from 7 countries

Development of Nanotechnology-based High-
performance Opaque & Transparent Insulation 
Systems for Energy-efficient Buildings
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Left: Lacquering and laminating machine of Fh IVV
Right: Structural elements of ORMOCERs (Fh ISC)

ORMOCER layers
� ORMOCER®s: Inorganic-organic hybrid polymers

� Mechanical protection of inorganic layers

� High barrier performance on inorganic layers

� Mechanical flexibility

� Smooth surface

� Application from liquid phase by reverse gravure process

� Curing of the lacquer by hot air

� Combination of ORMOCER® with inorganic layers



© Fraunhofer IVV 

Barrier effects of the hybrid polymeric intermediate layer

� Planarization of the inorganic layer

⇒ Decoupling of defects ⇒ Tortuous path effect

� Improved mechanical flexibility

� Synergistic effect between an inorganic layer and a hybrid polymer 
coated on it

Permeation through alternating barrier layers

Left: Structure of alternating barrier layers (O. Miesbauer, IVV)
Right: SEM picture of alternating barrier layers (IVV)
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PET substrate

� PET Melinex 401 (50 µm thickness)

� Smooth surface; low elongation in MD direction 
during ORMOCER curing

� „PET 1“

� Low thickness 23 µm; Cost efficient

Inorganic layers

� Al (thermal evaporation): Opaque VIPs

� AlOx (reactive thermal evaporation): Adhesion promoter

� SiOx (electron beam evaporation): Transparent VIPs

Novel barrier films for VIPs
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� Combination of different materials ⇒⇒⇒⇒ Adhesion is important

� Necessary for adhesion of a lacquer on a substrate surface

� Wetting of the lacquer

� Adaption of surface energies of lacquer and substrate surface

� Measurement of surface energies (polar and disperse part): 
Contact angle method

Adhesion between barrier layers

Left (Contact angle) and right (Ratio of polar parts of surface energy vs. 
adhesion strength): H. Potente, R. Krüger, Farbe und Lack 84 (1978) 2, 72–75 
Center (Wetting envelopes): I. Wallaschek, O. Miesbauer, IVV, 2011
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� Measurement of adhesion 
strength: EAA peel test

� EAA: Ethylene acrylic acid 
copolymer

Adhesion between barrier layers

EAA peel test: M. Jesdinszki et al., J. Adhesion Sci. Technol. 26 
(2012), 2339-2356
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� Good adhesion (> 2 N/15mm) of ORMOCER on Al or AlOx only 
for shown structures

� No adhesion of ORMOCER on PET 1 / Al in contrast to PET Melinex / Al

� AlOx works as adhesion promoter for ORMOCER on PET 1 / Al

� Choice of PET 1 / Al / AlOx / ORMOCER for further development 
since PET 1 is preferred substrate

Results for opaque barrier films: Adhesion
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� Surface of Al: Passivation with AlOx layer due to reaction with O2

from air

� No adhesion of ORMOCER on PET 1 / Al / AlOx (passivation)

� Good adhesion of ORMOCER on PET 1 / Al / AlOx (deposited)

� Explanation by electrochemical impedance spectroscopy

� Possible penetration of ORMOCER into deposited porous AlOx 
layer

⇒ Good adhesion

� Confirmation of synergistic effect

Results for opaque barrier films: Adhesion

Left: Synergistic effect (S. Amberg-Schwab et al., J SOL-GEL SCI 
TECHN 13 (1998), 141–146); Right: Impedance spectroscopy of PET 1 / 
Al / AlOx (deposited) / ORMOCER (J. Hollaender, IVV, 2012)
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Results for opaque barrier films: Adhesion

� Moderate adhesion of Al directly on ORMOCER

� AlOx works as adhesion promoter for Al on ORMOCER

� Alternative: Face-to-face laminate of PET 1 / Al / AlOx / ORMOCER

� Good adhesion obtained in face-to-face laminate of PET Melinex / Al 
/ ORMOCER
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O2 permeability (at 23°C, 50% r.h.) …

� … for inorganic layer on PET 1 higher than on PET Melinex

� Possible explanation: Higher substrate roughness of PET 1

� … with AlOx adhesion promoter lower than without AlOx

� Possible explanation: Synergistic effect of ORMOCER on top of AlOx

� … for final structures <  5⋅10-3 cm3(STP)⋅d-1⋅m-2⋅bar-1

Results for opaque barrier films: Barrier performance

WVTR (at 23°C, 85%→0% r.h.) …

� … for PET 1 / Al / AlOx / ORMOCER

/ Al // LDPE: ≤ 0.001 g⋅d-1⋅m-2
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Results for transparent barrier films: Barrier performance

O2 permeability (at 23°C, 0% r.h.) …

� … for single film <  5⋅10-3 cm3(STP)⋅d-1⋅m-2⋅bar-1

� … for face-to-face laminate <  1⋅10-4 cm3(STP)⋅d-1⋅m-2⋅bar-1
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� Novel barrier films for VIP encapsulation: combination of 
inorganic and ORMOCER layers

� Measured O2 permeabilities (23°C) <  5⋅⋅⋅⋅10-3 cm3(STP)⋅⋅⋅⋅d-1⋅⋅⋅⋅m-2⋅⋅⋅⋅bar-1

� Required O2 barrier performance almost reached

� Measurement of O2 and water vapour permeabilities for finally 
developed films in progress

� Choice of a suited sealing film

� Final evaluation of novel barrier laminates by measurement of 
the increase of gas pressure within VIPs encapsulated with these films

� AlOx layers as adhesion promoter necessary within opaque barrier 
films

� Further work to be able to omit the AlOx layers in industrial 
production process

Summary and outlook



© Fraunhofer IVV 

� K. Sharma, S. Hellstern, V. Wohlbold and the members of IVV’s depart-
ment of materials development: Coating trials, material characteri-
sation

� J. Hollaender: Electrochemical impedance spectroscopy

� Y. Carmi (Hanita Coatings), W. Lohwasser (Amcor Flexibles): Inorganic 
layers

� S. Amberg-Schwab, U. Weber (Fh ISC): ORMOCER lacquers

� H.-C. Langowski and project partners: Valuable suggestions and 
discussions

� NanoInsulate, funded by the EU 7th Framework Programme (FP7/2007 
– 2013) under grant agreement no. NMP4-SL-2010-260086

Acknowledgements



© Fraunhofer IVV 

Thank you for your attention!

Dipl.-Phys. Oliver Miesbauer M.Sc., Fraunhofer IVV
Tel.: +49(0)8161/491-522
Email: oliver.miesbauer@ivv.fraunhofer.de


