
Physical characterization of sorption 
and diffusion of water vapor through 
ultra barrier envelopes for VIP

IVIS  2013

September  19 - 20, 2013

E. PONSa, B. YRIEIXa, F. DUBELLEYb, E. PLANESb

a EDF R&D, Matériaux et Mécanique des Composants, Site des Renardières, 77818 Moret-sur-Loing, France

b LEPMI, UMR 5279, CNRS; Grenoble INP – Université de Savoie – Université J. Fourier; LMOPS; Bât IUT, 
Campus Savoie Technolac, 73376 Le Bourget-du-Lac, France



Prediction of VIP lifetime or conductivity => development of models
Real service conditions: variations of T and R.H.

Fine-tuned service life prediction: 
dynamic  models are required

Di = f(T, RH) (i refers to air or water vapor)
si = f(T, RH)

Introduction
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In this presentation: only water vapor
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Diffusion: Fick’s Law

Solubility: Henry’s law
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Gaseous transfer in a membrane: 
solution - diffusion model in 3 steps

Adsorption and dissolution on the 
upstream side of the membrane
Diffusion
Desorption on the downstream side



PET PET PET Sealing layer
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For a multilayer film: D and s in the 
previous eq. replaced by the equivalent diffusion 
and solubility coefficients, and a stacking model 
of “ideal multilayer” was verified for Π by 
measurements:

Introduction: permeance, solubility & diffusion
For a single film: expression of the permeance Π
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=Π (kg.m2.s-1.Pa-1) where x = thickness of the membrane
D = diffusion coefficient 
s = solubility coefficient
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White symbols: calculated (stacking model)

Measurements at (40°C, 40% RH) 

where subscript  i refers  to an individual layer 
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Membrane 

C1 = S.p1 

C2 = S.p2 

x 

p1 > p2 



Goals

Better comprehension of the evolution of permeance versus T 
and RH

D versus T, RH
s versus T, RH

Better comprehension of the role of the different layers which 
constitute the multilayer film

Determination of data for modeling
D and s of a typical multilayer used for VIP envelope
D and s of single films that constitute a multilayer

PET films (metalized or not)
Sealing layers: PE or PP
Upcoming: glue
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First  manometric  measurements on single metallized films: Π and D increase with T, s 
decreases with T (evolution of  Π controlled by evolution of D)
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How do we measure Π, D and s?
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Permeance

Direct measurement Indirect measurement

Π
Manometric method on foils 

(Deltaperm, Technolox)
(water vapor only)

Weight gain on VIPs in climatic 
chambers

(water vapor and air 
simultaneously)

Solubility and diffusion coefficients

Direct measurement Indirect evaluation 

s
- Water vapor sorption isotherms

(Belsorp Aqua, Bel Japan)
- Dynamic water vapor sorption
(IGAsorp DVS, Hiden Isochema)

Deduced from Π and D 
measurements

D
- Permeation on foils (transient regime)

(Deltaperm, Technolox)
- Dynamic water vapor sorption 

(transient regime)

Deduced from Π and s 
measurements

For more details, see:
L. Heymans, B. Yrieix & E. Pons 
« Permeation of water vapor through 
high performance laminates for 
VIP »



Permeation and sorption: cross approaches
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PERMEATION DYNAMIC SORPTION

D Π

s

C = f(p)D

(only for 
homogeneous 
membranes)



Water vapor sorption: calculation of s
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∆m = f(t) or τ = f(RH) C = f(p) s

s:  cm3(STP).cm-3(polymer).Pa-1

or  kg.m-3.Pa-1

C

p

→ s

Belsorp aqua for water sorption

pt

Gravimetric sorption

Volumetric sorption

IGAsorp for water sorption



Permeation & Water vapor sorption: exploitation 
of the transient regime
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Permeation (Deltaperm)
Required conditions

Preparation: vacuum drying between 3 and 48h 
according to the operating temperature and to the 
number of metalized layers to begin with a completely 
dry sample at initial state
Downstream chamber purged: Pdown  ini = 0
Water vapor admission upstream: quick compared with 
the transient regime duration time

Downstream 
pressure

tL = time-lag

Transient 
regime

Steady 
state
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For each RH step: Model D
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Water vapor sorption: results for single and 
multilayer films & influence of R.H.

3 PET films, 2 sealing layers and 2 multilayer films,  
tested at 25°C
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3 PET tested: same behavior
PET2  with or without metalization: 
no significant influence on s
PET films: good agreement with  
Henry’s law in the tested R.H. 
range (up to 82%)
Sealing films: mismatch with 
Henry’s law for R.H. above 50%
=> modification of  equations 
defining permeation
Multilayers: intermediate solubility 
coefficient value0
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p (kPa)

C
  (
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PET1 M1F 75 nm

PET2 without met

PET3 M1F 80 nm

PET2 M1F 80 nm

Multilayer A

Multilayer B

PE

PP

PET

Multilayer films

Sealing films

s 
(10-4 kg.m-3.Pa-1)

R.H. validity 
interval

PET (met. or not) around 25 <  82%

Sealing layer
PE 1,5 < 55%
PP 1 < 55%

Multilayer 5 - 10 < 55 or 75%



Water vapor sorption
Solubility coefficient for a multilayer

Calculation from the solubility coefficients of     
the single films that constitute the multilayer
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T
(°C)

Solubility coefficient 
(adsorption)  (kg.m-3.Pa-1)

R.H. validity 
interval

Thickness
(µm)

S
calculated
(kg.m-3.Pa-1)Linear Reg. through the origin

PET M1F PET2 M1F 80 nm
25 2.44E-03 [0 - 86%] 12.1
40 1.20E-03 [0 - 81%] 12.1

Sealing 
film

PP
25 9.72E-05 [0 - 65%] 50
40 8.87E-05 [0 - 82%] 50

Multilayer 
film

3-met + PP 
multilayer 25 8.26E-04 [15 - 75%] 90 1.04E-03

3-met  multilayer 25 2.35E-03 [3 - 77%] 39 2.27E-03
40 1.34E-03 [2 - 46%] 39 1.12E-03

i

n

i
imultilayer s V

V
1s

1
∑

=

=

with i referring  to the individual layers 

Good agreement

Comparison between methods, and with bibliographical values 
for PET at 25°C

S
Volumetric method 

(Belsorp Aqua)
Gravimetric 

method (DVS) Biblio

kg.m-3.Pa-1 [2,3.10-3 - 2,7.10-3]
PET 12 µm (2 diff)

3,1.10-3

amorphous PET
2,4.10-3

Shigetomi et al. (2000), 
J. App. Pol. Sci.,76

cm3(STP).cm-3(polymer).Pa-1 [2,9.10-3 - 3,4.10-3] 3,9.10-3
3,0.10-3

Shigetomi et al. (2000), 
J. App. Pol. Sci.,76



Water vapor sorption: influence of T
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Sorption behavior at different temperatures 
for PE

25°C
40°C
50°C
60°C

Single films (PET and sealing 
layers): 25 < T < 70°C 

When T increases, s decreases
strongly for PET 
less for PE and more weakly for PP

s follows an Arrhenius law

s0
(kg.m-3.Pa-1)

QS
(kJ.mol-1)

6.10-9 -32
1.10-9 -36
1.10-9 -36
4.10-8 -20
2.10-6 -9



Water vapor sorption

Mismatch with Henry’s law for sealing layers: do we 
need to change the model?
Evolution of water concentration in the different layers 
of a 3 ply metalized multilayer

In stationary conditions (50°C, 90% R.H.)
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Distance to the external PET layer (µm)

Complex with 3 metalized layers + 1 sealing layer
Steady state 50°C - 90% RH

RH = 90%

RH = 1%

RH = 29%

Only the external PET layer 
is exposed to high R.H.
The internal sealing layer is 
exposed to R.H. << 50%



Water vapor diffusion: first results for single films

Comparison between 2 
methods and 
bibliographical values for 
amorphous PET: good 
agreement
No influence of R.H. was 
observed on PET film 
between 10 and 80% 
=> to continue
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D
(m2.s-1)

Dynamic water vapor 
sorption (deduced from 

model)

Permeation on 
foils (transient 

regime)
Biblio

PET
6,3.10-13

(23°C, 10% < R.H.< 80%)
Amorphous PET 
(900 µm thick)

5,4.10-13

(25°C, 20% R.H.*)
Amorphous PET 
(900 µm thick)

3,5.10-13

(25°C)

5.10-13

(20°C)

Shigetomi et al. (2000), 
J. App. Pol. Sci.,76

Launay et al. (1999),
J. App. Pol. Sci., 73

* on the upstream side of the film



Water vapor diffusion: first results for multilayer 
films

Permeation through foils
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D
(m2.s-1)

Permeation on foils 
(transient regime)

1-met  + 
sealing 

multilayer
5,2.10-14

(40°C, 40% R.H.*)

3-met  + 
sealing 

multilayer
9,2.10-15

(40°C, 40% R.H.*)

* on the upstream side of the film



Water vapor diffusion: first results for multilayer 
films

Influence of T
Indirect evaluation of D, between 23 and 70°C, from Π (measured on VIPs) 
and s measurements
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T
(°C)

R.H.
(%)

Π
(kg.m-2.s-1.Pa-1)

D1-met
*

(m2.s-1)
Dmultilayer

(m2.s-1)
70 90 1.3E-13 6.52E-15 5.35E-14

Multilayer 50 90 1.2E-13 2.99E-15 2.55E-14
A1 40 40 7.9E-14 1.34E-15 1.17E-14

23 50 3.4E-14 2.84E-16 2.54E-15
Multilayer 70 90 6.5E-14 4.89E-15 2.63E-14

A2 50 90 5.4E-14 2.02E-15 1.12E-14
40 40 2.7E-14 6.89E-16 3.85E-15

Multilayer 70 90 8.4E-14 8.05E-15 3.85E-14
B1 50 90 6.8E-14 2.98E-15 1.54E-14

40 40 4.6E-14 1.31E-15 6.99E-15
Multilayer 70 90 1.1E-13 1.05E-14 5.05E-14

B2 50 90 8.2E-14 3.59E-15 1.86E-14
40 40 5.4E-14 1.54E-15 8.20E-15

Multilayer 70 90 1.4E-13 1.34E-14 6.56E-14
B3 50 90 7.1E-14 3.11E-15 1.59E-14

40 40 6.0E-14 1.71E-15 8.92E-15
* based on experimental measurements Πmultilayer(n) ~ Πn-met (and validated relation: )

Good agreement with permeation tests on foils
n

met-1
met-n

Π
=Π



Water vapor diffusion: first results for multilayer 
films

Influence of T
Indirect evaluation of D, between 23 and 70°C, from Π (measured on VIPs) 
and s measurements
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Evaluation of the activation 
energy for PET M1F of 5 tested 
multilayers

QD = 53 to 62 kJ.mol-1

D0 depends on the multilayer

RT
QD

eDTD
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Conclusions and outlook
The solubility coefficient was determined for PET and sealing 
films and also for multilayer films

The law of mixtures allowed to estimate the multilayer solubility

Henry’s law
OK for PET: the sorption isotherm is linear up to high R.H.
Not valid for the sealing layers and as a consequence for the multilayer films above 50% 
R.H.
However this deviation does not impact the studied multilayer films because only the 
external PET layer is exposed to high R.H.

Both coefficients follow Arrhenius’ law
QS < 0 and QD > 0
Good agreement with the activation energy 
determined for permeance: QΠ ~ 26 kJ.mol-1

Some quantitative data of s and D are given
Solubility: for simple films (determination for multilayer films by law of mixtures)
Diffusion:  first measurements for PET (good agreement between the methods)
and first evaluation from  Π and  s  for multilayer films  =>  to be consolidated
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Mean values 
for 1-met QD Qs QΠ

kJ.mol-1 57 -35 26
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