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by Samuel Brunner, EMPA

Goal:  
check the 
predictions  
based on lab
experiments 
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Outline 
• Introduction
• Experimental set-up
• Results
• Comparison with 

laboratory aging 
data

• Conclusions
Most common application 
in Switzerland nowadays 
are terrace insulation with 
> 10’000 m2
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Storage 
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Thick-
ness
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Crushed gravel 30
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10
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Protective layer 5

Water barrier 
(previous construction)

10

Porous concrete 
(previous construction)

200

Flat roof with VIP made for monitoring
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Experimental set-up 

top view
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50 x 50 x 2 cm3 “middle” sized
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Experimental set-up 
side view T3 in the gravel

TF1, T2TF2, T5

FT4,
T4,T8

FT3,
T1,T2 T6,T7
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Monitoring

Logging 
• Temperature
• Humitidy
• Climatic conditions
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Results:   Temp RH 
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measured internal pressure 
[mbar]
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Results: 
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size 50x50x2 cm3 
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Comparison of measured and calculated data

Calculation based on the 
temperature data (1 year)Panel 

size
Quantity
[mbar/yr]

Inside Outside Mean

pa (Teffective) 2.72 2.89 2.8

pa (Taverage) 2.48 1.70 2.1

pa (Teffective) 2.04 2.17 2.1

pa (Taverage) 1.86 1.27 1.6

[%-mass/yr]

Xwa (Teffective) 0.26% 0.29% 0.28%

Xwa (Taverage) 0.23% 0.16% 0.19%

Xwa (Teffective) 0.15% 0.17% 0.16%
0.13% ±0.02%50 x 50 x 

2 cm3 Xwa (Taverage) 0.14% 0.09% 0.11%

0.22% ±0.04%25 x 25 x 
2 cm3

1.9 ±0.250 x 50 x 
2 cm3

2.9 ±0.225 x 25 x 
2 cm3

Measurement 
after 424 d
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What will the λ-value in 25 years
for a “big” format 100 x 60 x 2 cm3 ?

separated area and edge length influence 
=> values for this size: pa 1.5 mbar/yr and Xwa = 0.10 %-mass/yr

time constant for moisture saturation τ = Xw,equilibrium / Xwa = 64.0 yr
with Xw,equilibrium ≈ 6.4 %-mass at 80 % RH

the predicted thermal conductivity increase as function of time 
t (in years) is then

( ))0.64/exp(14.650.05.1035.0)( ttt −−⋅+⋅⋅≈λ∆

λ25years = λinitial +∆λ(t)  [ 10-3 W/(m K) ]

= ~ 4.5 +2.3     = 7 ( 6 to 8) [ 10-3 W/(m K) ] 
As center-of-panel value
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Conclusions (part 1)
• flat roof with VIP insulation show aging effects 

quantified with reasonable accuracy after one year.
• aging characteristics from lab based aging of 

specimens can be related to the in-situ behaviour by 
linear or non-linear weighting

• pressure increase rate obtained by non-linear 
weighting is in good correspondence to the data. 

• moisture content increase seems to be overestimated
• linear weighting - lower values than observed for both
• Basically in-situ as well as laboratory based aging 

results suggest a service life in the range of several 
decades. 
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Conclusions (part 2)
• A long-term increase of the thermal conductivity must 

be taken into account in building applications. 
• The increment depends on barrier properties, panel 

dimensions and boundary conditions. For the 
described flat roof application a long-term value of 
7⋅10-3 W/(m K) may be appropriate for actual SiO2–
VIP with polymer-based barrier.

• Monitoring results from periods of several years are 
still needed to clarify existing uncertainties, to 
quantify additional aging effects not taken into 
account so far, and to further strengthen confidence 
in vacuum insulation.
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